Sadržaj
Pravokutnik je bilo kojeg ravnog oblika s četiri ravne stranice i četiri kuta od 90 stupnjeva, ili pravim kutovima. Svaka se strana pravokutnika spaja s dva prava kuta. Promjer pravokutnika je duljina dijagonale ili bilo jedne od dviju dugih linija koje se pridružuju suprotnim uglovima. Dijagonala dijeli pravokutnik na dva identična pravokutna trokuta. U matematici dijagonala pravokutnog trokuta naziva se hipotenuza. Upotrijebite pitagorejski teorem, H kvadrat = A kvadrat + B, da odredite duljinu dijagonale i na taj način izračunajte promjer pravokutnika.
Ispitajte T-kvadrat i uvjerite se da se dva komada sastaju pod kutom od 90 stupnjeva.
Nacrtajte bilo koji pravokutnik koji ispunjava oko pola lista papira. Koristite T-kvadrat kao vodič za pravljenje svih četiriju kutova. Osigurajte da su suprotne strane vašeg pravokutnika paralelne i jednake duljine.
Nacrtajte dijagonalu između dva suprotna ugla koristeći T-kvadrat.
Izmjerite duljinu svake strane do najveće preciznosti pomoću T-kvadrata i napišite vrijednosti u blizini odgovarajućih strana. Označite strane: označite bilo koju stranu "A", susjednu stranu (nasuprot hipotenuzi) označite "B" i postavite hipotenuzu "H."
Izračunajte duljinu hipotenuze trokuta (dijagonale) koristeći jednadžbu H = kvadratni korijen od (A kvadrat + B u kvadratu), izvedenu iz pitagorejske teoreme, za izračunavanje hipotenuze trokuta. Učvrstite vrijednosti A i B, a zatim dodajte kvadrate. Izračunajte vrijednost H pomoću kalkulatora kako biste pronašli kvadratni korijen rezultirajuće sume. Vrijednost H, duljina dijagonale, je također i promjer pravokutnika koji čine dva trokuta.
Izmjerite duljinu hipotenuze s T-kvadratom i usporedite mjerenje s izračunatom vrijednošću.