Dotična linija dodiruje krivulju u jednoj i samo jednoj točki. Jednadžba tangencijalne linije može se odrediti metodom presijecanja nagiba ili metodom točke nagiba.Jednadžba presijecanja nagiba u algebarskom obliku je y = mx + b, gdje je "m" nagib linije, a "b" je presjek y, koji je točka u kojoj tangencijalna linija prelazi osi y. Jednadžba točka-nagiba u algebarskom obliku je y - a0 = m (x - a1), gdje je nagib pravca "m", a (a0, a1) je točka na liniji.
Razlikovati zadanu funkciju, f (x). Derivat možete pronaći pomoću jedne od nekoliko metoda, kao što je pravilo napajanja i pravilo proizvoda. Pravilo snage kaže da je, za funkciju snage oblika f (x) = x ^ n, izvedena funkcija, f (x), jednaka nx ^ (n-1), gdje je n konstanta realnog broja. Na primjer, izvedenica funkcije, f (x) = 2x ^ 2 + 4x + 10, je f (x) = 4x + 4 = 4 (x + 1).
Pravilo proizvoda kaže da je izvedenica proizvoda dviju funkcija, f1 (x) i f2 (x), jednaka proizvodu prve funkcije, koliko puta je izvedenica druge plus proizvod druge funkcije, u odnosu na derivat druge prvi. Na primjer, izvedenica f (x) = x ^ 2 (x ^ 2 + 2x) je f '(x) = x ^ 2 (2x + 2) + 2x (x ^ 2 + 2x), što pojednostavljuje na 4x ^ 3 + 6x ^ 2.
Pronađite nagib tangencijske linije. Primjetite da je izvedenica jednadžbe prvog reda u određenoj točki nagib linije. U funkciji, f (x) = 2x ^ 2 + 4x + 10, ako bi od vas tražili da pronađete jednadžbu tangencijske linije na x = 5, započeli biste s nagibom, m, koji je jednak vrijednosti izvedenica pri x = 5: f (5) = 4 (5 + 1) = 24.
Dobijte jednadžbu tangencijske linije u određenoj točki pomoću metode nagiba točke. Možete zamijeniti zadanu vrijednost "x" u izvornoj jednadžbi da biste dobili "y"; to je točka (a0, a1) za jednadžbu točke nagiba, y - a0 = m (x - a1). U primjeru je f (5) = 2 (5) ^ 2 + 4 (5) + 10 = 50 + 20 + 10 = 80. Dakle, točka (a0, a1) je (5, 80) u ovom primjeru. Stoga jednadžba postaje y - 5 = 24 (x - 80). Možete ga preurediti i izraziti u obliku presretanja nagiba: y = 5 + 24 (x - 80) = 5 + 24x - 1920 = 24x - 1915.